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Abstract: The current paper is thrusting to bring out some techniques of  spaces by  defining 𝑠𝑡𝜎 and 𝑠𝑡𝜎∅
 of sigma 

strongly  convergence in statistically nature and lacunary nature of convergent sequences of strong sigma  statistically 

in nature. Some basic topological properties will be given. 
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1. Introduction and historical background: We call a sequence to be function whose domain is the set of natural 

numbers. Let us represent  𝑊 as  set of all real or complex sequences, so the sequence space is any subspace of 𝑊. 

With 𝑁, 𝑅 and 𝐶 we designate the set of non-negative integers, the set of real numbers and the set of complex 

numbers, respectively. Let 𝑙∞, 𝑐 and 𝑐0, respectively, designates the set of  bounded sequences, convergent sequences 

and those which has limit as zero [1], [8], 11-[15], [18]-[21]. 

Cesàro sums represents an “averaging” process. In 1890 the Italian mathematician Ernesto Cesàro used such sums 

while investigating products of infinite series. A expansion of the type ∑ 𝑣𝑟
∞
𝑟=0  is said to be Cesaro summable to 𝐿 ∈

𝑅 if and only if its Cesaro sum converges i.e., 

 𝜎𝑛 = ∑ [1 −
𝑟

𝑛
] 𝑣𝑟

𝑛−1

𝑟=0

 =  
𝑠0 + 𝑠1 + ⋯ + 𝑠𝑛−1

𝑛
=

1

𝑛
∑ 𝑠𝑟

𝑛−1

𝑟=0

  

converges to 𝐿 as 𝑖 → ∞. 

Thus, for a sequence 𝑣𝑟 with ∑ 𝑣𝑟
∞
𝑟=0 = 𝐿 converges if and only if its  sequence of partial sums 𝑠𝑛 converges to 𝐿 i.e., 

given 𝜀 > 0, we can find a natural number  𝑛0 ∈ 𝑁 in such a way that 𝑛 ≥ 𝑛0 implies |𝑠𝑛 − 𝐿| < 𝜀 or equivalently, if 

|𝜎𝑛 − 𝐿| < 𝜀 then  ∑ 𝑣𝑟
∞
𝑟=0  is  Cesàro is summable [22]. Then, we can have 

|𝜎𝑛 − 𝐿| = |
𝑠0 + 𝑠1 + ⋯ + 𝑠𝑛−1

𝑛
− 𝐿| = |∑ [1 −

𝑟

𝑛
] 𝑣𝑟

𝑛−1

𝑟=0

− 𝐿|. 
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The natural density of for the set of natural numbers 𝐾  is defined as 

𝛿(𝐾) = lim
𝑛→∞

1

𝑛
|𝐾𝑛| 

only if limit is finite, where   𝐾𝑛 = {𝑟 ∈ 𝐾 ∶   𝑟 ≤ 𝑛} and  |. | represents the cardinality of the set. 

Definition 1.1:  We call a sequence  𝑣 = (𝑣𝑗) to be  statistically convergent to 𝐿 if given 𝜀 > 0, we have  

lim
𝑛→∞

1

𝑛
|{𝑟 ≤ 𝑛 ∶   |𝑣𝑟 − 𝐿| ≥ 𝜀 }| = 0, 

that is,  𝐾 = 𝐾(𝜀) = {𝑟 ∈ 𝐾 ∶   |𝑣𝑟 − 𝐿| ≥ 𝜀 } has natural density zero as can be seen in [5]-[7]. With  this 

symbolization, we represent it as 𝑠𝑡 − 𝑙𝑖𝑚 𝑣 = 𝐿. With 𝑠𝑡 represents the set of all  statistically convergent sequences  

will be represented. 

The idea of statistical convergence was introduced in [4] and studied by several authors as can be seen in  [1]-[3], [5], 

[6], [22] and many more. There is a well known relationship  between statistical convergence and strong Cesàro 

summability [2]: 

𝜎1 = {𝑣 = (𝑣𝑛), ∃ 𝑠𝑜𝑚𝑒 𝐿 ∋ : lim (
1

𝑛
∑|𝑣𝑟 − 𝐿|

𝑛

𝑘=1

) = 0}. 

Definition 1.2: By a lacunary sequence we mean an increasing sequence ∅ = (𝑘𝑟) of integers, such that 𝑘0 = 0 and 

ℎ𝑟 = 𝑘𝑟 − 𝑘𝑟−1  →  ∞. Throughout the text  the intervals determined by ∅ will be denoted by 𝐼𝑟 = (𝑘𝑟−1, 𝑘𝑟] and the 

ratio 
𝑘𝑟

𝑘𝑟−1
will be abbreviated by 𝑞𝑟  [1], [10] etc. 

Definition 1.3: An Orlicz function is a function ℶ: [0,∞) → [0,∞) which is continuous, non-decreasing and convex 

with ℶ(0) = 0,ℶ(𝑣) > 0 for  𝑣 > 0  and  ℶ(𝑣) → ∞ as 𝑣 → ∞ and can be further seen in [9],[17].  

It is to be noted that if the convexity of Orlicz functions ℶ is replaced by 

ℶ(𝑥 + 𝑦) ≤ ℶ(𝑥) + ℶ(𝑦) 

then the function is called modulus function [16]. 

Let ∅ be a lacunary sequence; the number sequence 𝑣 is 𝑆∅ − convergent to 𝐿 provided that for every 𝜀 > 0,  we have 

lim
r

1

ℎ𝑟

{𝑘 ∈ 𝐼𝑟 ∶ |𝑣𝑘 − 𝐿| ≥ 𝜀} = 0. 

In this case we write 𝑆∅-limit 𝑣 = 𝐿 or 𝑣𝑘 → 𝐿(𝑆∅), and we define  

𝑆∅ = {𝑣 = (𝑣𝑛), ∃ 𝑠𝑜𝑚𝑒 𝐿 ∋ : 𝑆∅ − limit 𝑣 = 𝐿}. 

2.  Main result 

In this portion, we will now introduce new sequence spaces. Also, we will investigate inclusion relations between 

these new spaces and strongly 𝜎 statistically convergent and lacunary strongly 𝜎-statistically convergent. 
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Definition 2.1: Let ℳ be an Orlicz and ∅ = (𝑘𝑟) be lacunary sequence. We define the following new spaces: 

𝑆𝜎[ℳ]∅ = {𝑣 = (𝑣𝑘) ∶    lim
r

1

ℎ𝑟
∑ ℳ|(𝜁𝑘𝑟(𝑣𝑘 − 𝐿𝑒))| = 0
𝑘∈𝐼𝑟

, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛  𝑟} 

and  

𝑆𝜎[ℳ] = {𝑣 = (𝑣𝑘) ∶    lim
n

1

𝑛
∑ℳ|(𝜁𝑘𝑟(𝑣𝑘 − 𝐿𝑒))| = 0

𝑚

𝑘=0

, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛  𝑟 } . 

Definition 2.2: We call a sequence 𝑣 = (𝑣𝑘) to be strongly 𝜎-statistically convergent to  𝐿 if given 𝜀 > 0, we have 

 lim
n

sup
𝑟

1

𝑛
 | {0 ≤ 𝑘 ≤ 𝑛:  |𝜁𝑘𝑟(𝑣𝑘 − 𝐿𝑒)| ≥ 𝜀}| = 0. 

We symbolize it as 𝑆∅ −lim𝑣 = 𝐿𝑒. 

Definition 2.3: For a lacunary sequence ∅ = (𝑘𝑟), we call a sequence 𝑣 = (𝑣𝑘) to be lacunary strongly 𝜎-statistically 

convergent to  𝐿 if given 𝜀 > 0, we have 

 lim
n

sup
𝑟

1

ℎ𝑟
 | {𝑘 ∈ 𝐼𝑟 ∶   |𝜁𝑘𝑟(𝑣𝑘 − 𝐿𝑒)| ≥ 𝜀}| = 0. 

We symbolize it as 𝑆∅𝜎
−lim𝑣 = 𝐿𝑒. 

We have following results which we state without proof. 

Theorem 2.4:  If ℳ is an Orlicz function with 0 <  𝛿 < 1, then,  

ℳ(|𝜁𝑘𝑟|) ≤ 2ℳ(1)𝛿−1|𝜁𝑘𝑟|. 

Theorem 2.5:  If ℳ is an Orlicz function, then, 𝑆𝜎[ℳ] ⊂ 𝑆∅𝜎
. 
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